Statistical Models for the Analysis of Optimization Algorithms With Benchmark Functions
نویسندگان
چکیده
Frequentist statistical methods, such as hypothesis testing, are standard practice in papers that provide benchmark comparisons. Unfortunately, these methods have often been misused, e.g., without testing for their test assumptions or controlling family-wise errors multiple group comparisons, among several other problems. Bayesian Data Analysis (BDA) addresses many of the previously mentioned shortcomings but its use is not widely spread analysis empirical data evolutionary computing community. This paper provides three main contributions. First, we motivate need utilizing and an overview this topic. Second, discuss practical aspects BDA to ensure our models valid results transparent. Finally, five can be used answer research questions. The online appendix a step-by-step guide on how perform discussed paper, including code models, transformations tables figures.
منابع مشابه
the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولStatistical Models of Multimodal Functions and Construction of Algorithms for Global Optimization
The problems and results in constructing the statistical models of multimodal functions are reviewed .. The rationality of the search for global minimum is formulated axiomatically and the features of the corresponding algorithm are discussed. The results of some applications of the proposed algorithm are pre-
متن کاملon some bayesian statistical models in actuarial science with emphasis on claim count
چکیده ندارد.
15 صفحه اولComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملOn strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions
The implementation of global optimization algorithms, using the arithmetic of infinity, is considered. A relatively simple version of implementation is proposed for the algorithms that possess the introduced property of strong homogeneity. It is shown that the P-algorithm and the one-step Bayesian algorithm are strongly homogeneous.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Evolutionary Computation
سال: 2021
ISSN: ['1941-0026', '1089-778X']
DOI: https://doi.org/10.1109/tevc.2021.3081167